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Course Reminders!

e Submit the weekly reflection questions to MarkUs!

e Sign up for a paper presentation slot!

e Homework 1 due next week!

¢ Think about your projects!


https://markus.teach.cs.toronto.edu/csc2541-2020-01/
https://docs.google.com/spreadsheets/d/1au3A_T1WHinRu041ebTLU31xpu5pbq3CyJ1I9ysfogw/edit?usp=sharing

Logistics

e (Course website:
https://cs2541-ml4h2020.qgithub.io

e Piazza:
https://piazza.com/utoronto.ca/winter2020/csc2541

e Grading:

20% Homework (3 problem sets)

10% Weekly reflections on Markus (5 questions)

10% Paper presentation done in-class (sign-up after the first lecture)
60% course project (an eight-page write up)


https://cs2541-ml4h2020.github.io
https://piazza.com/utoronto.ca/winter2020/csc2541

Schedule

Jan 9, 2020, Lecture 1: Why is healthcare unique?
Jan 16, 2020, Lecture 2: Supervised Learning for Classification, Risk Scores and Survival

Jan 23, 2020, Lecture 3: Clinical Time Series Modelling

Jan 30, 2020, Lecture 4: Causal inference with Health Data --- Dr. Shalmali Joshi (Vector)
Problem Set 1 (Jan 31 at 11:59pm)

Feb 6, 2020, Lecture 5: Fairness, Ethics, and Healthcare
Project proposals (Feb 6 at 5pm)

Feb 13, 2020, Lecture 6: Deep Learning in Medical Imaging -- Dr. Joseph Paul Cohen (MILA)
Problem Set 2 (Feb 14 at 11:59pm)

Feb 20, 2020, Lecture 7: Clinical NLP and Audio -- Dr. Tristan Naumann (MSR)

Feb 27, 2020, Lecture 8: Clinical Reinforcement Learning

Mar 5, 2020, Lecture 9: Interpretability / Humans-In-The-Loop --- Dr. Rajesh Ranganath (NYU)
Problem Set 3 (Mar 6 at 11:59pm)

Mar 12, 2020, Lecture 10: Disease Progression Modelling/Transfer Learning -- Irene Chen (MIT)

Mar 19, 2020, Project Sessions/Lecture

Mar 26, 2020, Course Presentations

April 4, 2020, Course Presentations
Project Report (Apr 3 at 11:59pm)
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a. Missingness
b. Representation

2. Case Study 1: MTGPs for Mortality Prediction and TBI
3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction

4. Project Discussion
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Problem: Hospital decision-making / care planning
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Problem: Hospital decision-making / care planning

Observe Patient Data “Real-time” Prediction
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How Do We Handle Time?

e An image gives a snapshot of an object, but a video dictates form!
e We want to model patient risks/treatments/outcomes as they live.

e Strategies:
e Amortize - Make features out of mean, min, max, etc.
e Stack - Inputs of fixed size, and concatenate.
¢ Deal - Use a method that addresses dynamics.

e Focus on dealing in this lecture.
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What is Missingness?

Time-Varying Lab Measurements
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. = Oxygen saturation
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Missing Data Details

Data can be missing according to several regimes:

e Missing completely at random (MCAR)
e Missing at random (MAR)
e Missing not at random (MNAR)
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Missing Data Details

Data can be missing according to several regimes:

e Missing completely at random (MCAR)

o The observed pattern of missingness is independent from the observed or missing values.

e Missing at random (MAR)

o The observed pattern of missingness is independent from the missing values (but may depend

e Missing not at random (MNAR

o All bets are off.
\ Healthcare lives here.




Missing Data is Confounding
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How do we handle missing data?

RECURRENT NEURAL NETWORKS FOR MULTIVARI-
ATE TIME SERIES WITH MISSING VALUES

Zhengping Che, Sanjay Purusho
Department of Computer Science
University of Southern California
Los Angeles, CA 90089, USA

L '
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Sparse Multi-Output Gaussian Processes for
Medical Time Series Prediction

LIFANGC@PRINCETON.EDU
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Modeling Irregularly Sampled Clinic

Satya Narayan Shukla, Benjamin M. Mar
College of Information and Computer Scienc
University of Massachusetts Amherst
Amberst, MA 01003
{snshukla,marlin}@cs.umass.edu

Modeling Missing Data in Clinical Time Series with RNNs

Zachary C. Lipton

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093, USA

David C. Kale

USC Information Sciences Institute
Marina del Rey, CA, USA

Randall Wetzel

Laura P. and Leland K. Whittier Virtual Pediatric Intensive Care Unit
Children’s Hospital LA

Los Angeles, CA 90089

ZLIPTON@CS.UCSD.EDU

KALEQISI.EDU

RWETZELQCHLA.USC.EDU




Imputation

1. Statistical Timeseries Forecasting: ARMA/ARIMA/ARIMAX, etc.

Easy Baselines: Constant infilling, Sample & Hold (+ indicators), Interpolation
Traditional Imputation: MICE/3D-MICE, MissForest, Matrix/Tensor Completion
Gaussian Processes

Advanced neural methods (GRU-D, GANSs, etc.)

o H~ b



Imputation
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Figure 2: Example trajectories of six vital signs for a single admission, following imputation using Gaussian processes.
Twelve vital signs are jointly modeled by the GP.

Prasad, Niranjani, et al. "A reinforcement learning approach to weaning of mechanical ventilation in intensive care units."

arXiv preprint arXiv:1704.06300 (2017).



GANSs for Imputation

GAIN: Missing Data Imputation using Generative Adversarial Nets

Jinsung Yoon'" James Jordon’" Mihaela van der Schaar '



GANSs for Imputation

Monet Z_ Photos

——

Mask Deepfillvl Our Result

Figure 6. Qualitative comparisons with Deepfillvl [15] on the
CelebA-HQ validation sets.

photo —>Monet

Left: Jo, Youngjoo, and Jongyoul Park. "SC-FEGAN: Face Editing Generative Adversarial Network with User's Sketch and Color." arXiv preprint arXiv:1902.06838 (2019).
Middle: Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
Right: https://thispersondoesnotexist.com/



https://thispersondoesnotexist.com/

GAIN: Generative Adversarial Imputation
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Figure 1. The architecture of GAIN



Imputation Papers

GAIN: https://arxiv.org/pdf/1806.02920.pdf

GRU-D: https://www.nature.com/articles/s41598-018-24271-9

GP Imputation: https://arxiv.org/pdf/1704.06300.pdf
Interpolation-prediction network: https://arxiv.org/pdf/1812.00531.pdf

BN~

Table I: Performance on mortality and length of stay prediction tasks on MIMIC-III. Loss: Cross-
Entropy Loss, MedAE: Median Absolute Error (in days). EV: Explained variance

Model Classification Regression
AUC AUPRC Loss MedAE EV score

Log/LinReg  0.772+0.013  0.303 + 0.018 0.240 £ 0.003 3.528 £ 0.072 0.043 £ 0.012
SVM 0.671 £ 0.005 0.300 4 0.011 0.260 =+ 0.002 3.523 4 0.071 0.042 £ 0.011
AdaBoost 0.829 £ 0.007  0.345 £ 0.007 0.663 £ 0.000 4.517 £+ 0.234 0.100 + 0.012
RF 0.826 = 0.008  0.356 & 0.010 0.315 £ 0.025 3.113 £ 0.125 0.117 £ 0.035
GRU-M 0.831 £ 0.007  0.376 &+ 0.022 0.220 £ 0.004 3.140 £ 0.196 0.131 £ 0.044
GRU-F 0.821 £0.007  0.360 £ 0.013 0.224 £ 0.003 3.064 + 0.247 0.126 + 0.025
GRU-S 0.843 £ 0.007  0.376 £+ 0.014 0.218 £ 0.005 2.900 £ 0.129 0.161 £ 0.025
GRU-D 0.835+0.013  0.359 & 0.025 0.225 £0.009 2.891 +0.103  0.146 £ 0.051

Proposed

0.853 £ 0.007 0.418+0.022 0.210+0.004 2.862+0.166 0.245+0.019



https://arxiv.org/pdf/1806.02920.pdf
https://www.nature.com/articles/s41598-018-24271-9
https://arxiv.org/pdf/1704.06300.pdf
https://arxiv.org/pdf/1812.00531.pdf

Opportunities

1.

Improved imputation methods. How do forecasting, GP, or adversarial
methods compare to GRU-D/interpolation prediction network? Can we
incorporate uncertainty offered by GPs usefully into downstream tasks? Can
we make other models offer uncertainty?

Can we model the decision process by which clinicians choose what to
measure and what to omit? How would this be helpful in downstream tasks?
Can this help account for the MNAR nature of healthcare missingness?

Can we control for the confounding effects of missingness? Can we learn a
model on underlying physiology from retrospective, care-byproduct data?
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Representation: Why do we care?




Representations define a notion of “similarity”

Closer in “Conceptual Space” Closer in “Pixel Space”



Representations learn a notion of similarity
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Figure 1: Examples of the kernel k;.(z,2) in (1) with ¢ = 5 on three features evaluated on
adult ICU population: Hematocrit, Lactic Acid, and Patient Age

Conroy, Bryan, Minnan Xu-Wilson, and Asif Rahman. "Patient Similarity Using Population Statistics and Multiple Kernel Learning." Machine Learning for Healthcare Conference. 2017.



Representations can stabilize changing data

10 10 10
09
, 08
2
z
207
wf= |tem-ID (n=5) wfe=_|tem-ID (n=5) wf= Item-ID (n=5)
0.6 1 g Clin. Agg. (n=5) 0.6 | e Clin. Agg. (n=5) 0.6 { g Clin. Agg. (n=5)
=== year-agnostic, item-1D \ === year-agnostic, item-ID === year-agnostic, item-1D
05 = | 05

T r T T u u 05 T T T T T T T r r T T T
2002 2004 2006 2008 2010 2012 2002 2004 2006 2008 2010 2012 2002 2004 2006 2008 2010 2012

Year Year Year

(a) Mortality AUC, models (b) Mortality AUC, models (c) Mortality AUC, models

trained on 2001-2002 data. trained yearly on prior year only. trained yearly on all prior data.
10 10 10
09 09 09
2 08 o 08 L, 08
= 2 2
x x x
06 { g Item-ID (n=5) 06 | e Item-ID (n=2) 06 1 e Item-ID (n=1)
=== Clin. Agg. (n=5) wfe= Clin. Agg. (n=2) = Clin. Agg. (n=2)
05 T T T u T T 05 1 T T T T T 05 T T T T T
2002 2004 2006 2008 2010 2012 2002 2004 2006 2008 2010 2012 2002 2004 2006 2008 2010 2012

Yaar Yaar Yaar

(d) LOS AUC, models trained on (¢) LOS AUC, models trained (f) LOS AUC, models trained
2001-2002 data. yearly on prior year only. yearly on all prior data.

Figure 1: Performance of RF classifiers using Item-Id and Clinically Aggregated representa-
tions on mortality (top) and LOS prediction (bottom). Error bars indicate + standard error.

Nestor, Bret, et al. "Rethinking clinical prediction: Why machine learning must consider year of care and feature aggregation." Machine Learning for Healthcare Conference. 2019



Representations can stabilize changing data

Train DB: CareVue, Test DB: MetaVision, In-Hospital Mortality
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Gong, Jen J., et al. "Predicting clinical outcomes across changing electronic health record systems." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. ACM, 2017.



Representations can join disparate modalities

DenseNet121 )
Image Jomt'
Embedding
Space
- avgpool

(1) Supervised: EA

.
CEP

Text Feature

Text

(2) Unsupervised: Adv

worsening opacities in
the lung bases NAME
reflect worsening
atelectasis ..

(3) Semi-supervised: EA + Adv

Distributed Embeddings

Figure 1: The overall experimental pipeline. EA: embedding alignment; Adv: adversarial training.

Hsu, Tzu-Ming Harry, et al. "Unsupervised multimodal representation learning across medical images and reports." arXiv preprint arXiv:1811.08615 (2018).



DeepCluster: Why bother with labels?

2 Classification
Input Convnet "“Ac\g\w"‘ l
5 2 -0 /' -
A ‘“ — | 1 Pseudo-labels
. \ Clustering
—/ o .h. p

./
,

’

Fig. 1: Illustration of the proposed method: we iteratively cluster deep features
and use the cluster assignments as pseudo-labels to learn the parameters of the
convnet.

Caron, Mathilde, et al. "Deep clustering for unsupervised learning of visual features." Proceedings of the European Conference on Computer Vision (ECCV). 2018.



Representation Learning in Action: Multitask Learning

Multi-task Prediction of Disease Onsets from Longitudinal
Lab Tests

Narges Razavian, Jake Marcus, David Sontag
Courant Instit

1 Multitask Learning and Benchmarking with

Clinical Time Series Data

Hrayr Harutyunyan', Hrant Khachatrian’-, David C. Kale', Greg Ver Steeg', and Aram
Galstyan'

MoleculeNet: a benchmark for molecular machine hied siates of America
learningt

Zhengin Wu, 2 £ Bharath Ramsundar,1® Evan N. Feinberg,§ Joseph Gomes, () §°
Caleb Geniesse,© Aneesh S. Pappu,® Karl Leswing® and Vijay Pande*?




Representation Learning in Action: Clustering

Complications ofsurglcal@

procedures or medical care

Gastroduodenal ulcer

° .
Fracture of lower limb

* Complication of device; implant or graft
® ° =
®

L] °
Peri-; endo-; myocarditis; ° Q neumonia
cardlomyopalhy@ Deficiency andother anemia Ld &

Other fractures (ribs, pelvis)

° o Cd , e
Hypertension with ® ® ® < Osteoarthritis
complications and pe * @
secondary ° =
hypertension Other circulatory disease Other hereditary, degenerative
nervous system conditions
Fracture of humerus,
Other upper ) ‘racture of radius & ulna
respiratory infections
Other complications, L . =
of pregnancy Otitis media O
and related conditions i
Other fracture of upper limb
Other viral infections ¢ -
Genitourinary symptoms Olh.er fe'T‘“]e °
and ill-defined genital disorders
conditions

¥ ° Qther unspecified benign neoplasm

Retinal detachments; defects;
vascular occlusion; retinopathy

(a) Scatterplot of the final representations g;’s of GRAM-+

Choi, Edward, et al. "GRAM: graph-based attention model for healthcare representation learning." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 2017.



Representation Learning in Action: Clustering

(a) hd (b) (c) #

-1

Figure 3: tSNE on context vectors of test dataset from BSS model colored by (a) red: positive examples and
blue: negative examples, (b) average systemic diastolic blood pressure; and (c) average central venous pressure.

Dhamala, Jwala, et al. "Multivariate Time-Series Similarity Assessment via Unsupervised Representation Learning and Stratified Locality Sensitive Hashing: Application to Early Acute Hypotensive
Episode Detection." IEEE Sensors Letters 3.1 (2019): 1-4.



Representation Learning in Action: Anomaly Detection

Training the GAN [ Identifying anomalies
— dEl o St
et
Rarts Healthy data Unseen data Anomalies
Preprocessmg

Fig. 1. Anomaly detection framework. The preprocessing step includes extraction and
flattening of the retinal area, patch extraction and intensity normalization. Generative
adversarial training is performed on healthy data and testing is performed on both,
unseen healthy cases and anomalous data.

Schlegl, Thomas, et al. "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery." International Conference on Information Processing in Medical Imaging.
Springer, Cham, 2017.



Representation Learning in Action: Anomaly Detection

(a) Real (b)

Generated
G(2)

Generator G Discriminator D - anomalous

Fig. 2. (a) Deep convolutional generative adversarial network. (b) t-SNE embedding
of normal (blue) and anomalous (red) images on the feature representation of the last
convolution layer (orange in (a)) of the discriminator.



Key Points for Healthcare

Representations can normalize.

Generalization to unseen tasks is critical (e.g., patient subtyping).
Representations can aid in interpretability.

Representations can span many modalities.
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Remember This? Topics Improves Mortality Prediction

In-Hospital Mortality

0.95
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e Forward-facing ICU mornrtality prediction with notes.
¢ Latent representations add predictive power.

¢ Topics enable accurately assess risk from notes.

141



Add Information About Evolution of Signals

e |earn a new latent representation to evaluate multi-dimensional function
similarity (0).

o,
[0, 6,65]
2| N Fe Ui o,
N < I
ABP 6,
I DL CL
| — 5,
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2 o [6:6,0,] ‘T’
o e e; CH
L 6,

Clinical Signals —mm> MTGP Hyperparameters —_— Latent Space
MTGP models capture Transform signals into MTGP Compare patient similarly in the new
movements within and hyperparameter representation. representation.

between signals.
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Learning Single Task Gaussian Processes (STGP)

e Model each signal as a GP task with mean and covariance functions.

Yn = .(](1_7:'”) ~ GP (771'(571-)~ 'L‘,'(fne :?;7))

e GP’s commonly used to predict at new indices.
(Y™ |x*, x,y) ~ .\"(m(y‘)w \'ur(y'))

m(y*) = K(x,.x")"K(x,x) 'y
var(y*) = K((x*,x") — K(x.x’)TK(x.X)_lK(x.x')

e | earn the parameters (6) of the kernel from data.
NLML = —log p(y|x,0)

1 ‘ 1
= 310,.9_;‘K‘ + 3yTK‘1y — %1()g(27r)
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Single vs. Multi-task Gaussian Processes

eAssume we have m sets of:
* Inputs X'
e Temporal covariance hyperparameters &' ,
¢ Estimated functions f
* Noise terms ¢
e Qutcomes y'

¢ \WWe can train m single-task Gaussian process
(STGP) (a) or a multi-task Gaussian process (MTGP)
to relate the m tasks through all prior variables, with
the tasks’ labels / and similarity matrix 6 (b).

44
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Learning MTGPs As Representations

* Use an MTGP representation to relate m inputs through K, and K .

KJ’\IT (Xn1 l: QC: gt) = Kc(l: gc) XD Kt (X‘n_s 9{) \
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[1] Bonilla, Edwin V., Kian M. Chai, and Christopher Williams. "Multi-task Gaussian process prediction." Advances in neural information processing systems. 2007.
[2] Carl Rasmussen’s minimize.m was used for gradient-based optimization of the marginal likelihood. 45




Estimating Signal in Traumatic Brain Injury Patients

100 - 2
Eﬁi H l H i 150 - -
60 ; { Mt f T ¥ 74, 4 = 1254 P 1 a0 o .7 . | B
IcP 0l and- 1 R R | “'i S | S |+ D R Y S 2™ MAP 100 froer s sidi ¥  Uandiiag™ N N n b q \
204 - - oA L B oo .'":)/ A 751 A YU e

0% - > v r v —— T - 5 — >— —_— S L, e S ——.

0 T —
100 2:00 300 400 S5:00 6:00 700 &00 S00 1000 11001200 1:00 200 300 €00

e|ntracranial pressure (ICP) and mean arterial blood pressure (ABP) are
important indicators of cerebrovascular autoregulation (CA) in traumatic Brain
Injury (TBI) patients.

e CA sustains adequate cerebral blood flow' and impairment risks secondary
brain damage and mortality.?

e CA is assessed using a sliding window Pearson’s correlation between the
ICP and ABP - the Pressure-Reactivity Index (PRx)°.

[1] Werner, C., and K. Engelhard. "Pathophysiology of traumatic brain injury." British journal of anaesthesia 99.1 (2007): 4-9.
[2] Hlatky, Roman, Alex B. Valadka, and Claudia S. Robertson. "Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation." Neurosurgery 57.5 (2005): 917-923.
[3] Czosnyka, Marek, et al. "Continuous assessment of the cerebral vasomotor reactivity in head injury." Neurosurgery 41.1 (1997): 11-19.
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TBI Estimation Methodology

*PRx isn’t calculated when either signal is
contaminated - evaluate STGPs/MTGPs for
interpolation, and MTGPs for PRx estimation.

eCollected data from 35 TBI patients with 24+ hours of
ICP and ABP recordings sampled every 10 seconds.

¢ Selected 30 ten-minute windows where ICP/ABP
were free from artifacts and missing values from each
patient recording; randomly introduced artificial gaps in
both signals (x’s).
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MTGP Representations Improve Signal Forecasting

and Outcome Prediction

Performance on Signal
Forecasting

Signal Measure | STGP ||[MTGP
ICP RMSE 0.91 0.69
& MSLL 0.6 0.45
RMSE 2: 77 1.98
e MSLL | 0.65 0.55

e MTGPs outperform STGPs in
signal reconstruction.

¢ Automatically estimate
cerebrovascular autoregulation.
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* Final cohort consisted of 10,202 patients, with 313,461 notes.

Performance on Mortality

Prediction
Features Hospital
Mortality
Ave. Topics 0.759
SAPS-I1 + MTGP 0.775
Ave. Topics + MTGP 0.788
0.812

| SAPS-I + Ave. Topics + MTGP

e MTGP hyperparameter
representations improve

short-term mortality prediction.



Outline

1. What’s Time Got To Do With [t?
a. Missingness
b. Representation

2. Case Study 1: MTGPs for Mortality Prediction and TBI
3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction

4. Project Discussion
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Can We Predict Interventions?

34,148 ICU patients from MIMIC-III
5 static variables (gender, age, etc.)

29 time-varying vitals and labs (oxygen saturation, lactate, etc.)

All clinical notes for each patient stay

static narrative numerical

time

ID | Hour | Var1
L

3 0 64.1 | ...

3 1 40.2

Extract as hourly

timeseries

for K topics, D documents, N word

a, B : params for Dirichlet priors

@, ~ Dir(p) : word dist. for topic &

Unsupervised LDA model

learna; B ; 0,; ¢,
s
6, ~ Dir(a) : topic dist. for document d
\\

Replicate across time
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Raw Physiology vs “Words” Embedding

Numerical Physiological Words
patient ho! in glucose patient ho glucose. 2 | gl 1 | glucose. 0 glucose 1 | glucose
3 1 3 1 0 0 0 0 0
3 2 NaN _ 3 2 0 0 0 0 0
3 3 101.2344 3 3 0 1 0 0 0

e Many values are missing!
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Raw Physiology vs “Words” Embedding

Numerical Physiological Words
patient ho! patient h glucose, 2 | glucose_-1  glucose 0  glucose 1 | glucose
3 1 3 1 0 0 0 0 0
3 2 3 2 0 0 0 0 0
3 3

e Many values are missing!
e /-score existing variables, rounding to the nearest int.
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Raw Physiology vs “Words” Embedding

Numerical Physiological Words
patient hours in glucose patient hours in glucose_-2 | glucose_-1 | glucose_0 @ glucose_1 | glucose_2
3 1 3 1 0 0 0 0 0
3 2 - . 3 2 0 0 0 0 0
3 3 3 0 1 0 0 0

e Many values are missing!
e /-score existing variables, rounding to the nearest int.
e (Convert each z-score into its own binary column.
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Raw Physiology vs “Words” Embedding

Numerical Physiological Words

patient hours in glucose patient hours in glucose_-2 | glucose_-1 | glucose_0 @ glucose_1 | glucose_2

3 1 3 1 0 0 0 0 0
3 2 - . 3 2 0 0 0 0 0
3 3 3 0 1 0 0 0
1 A row of all zeros indicates

a missing value at that hour.

e Many values are missing!
e /-score existing variables, rounding to the nearest int.
e (Convert each z-score into its own binary column.
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Many Ways to Model, What Do We Learn?

Learn model parameters
over patients with
variational EM.

SSAM
Infer hourly distribution over Logistic regression Predict ;
hidden states with HMM DP (with label-balanced inrz dl\c/;ar?c?:e
(fwd alg.). cost function)

LSTM

CNN
E} layers feamresx < [y R >< >< ><E|

Output
softmax

timestep 1D temporal Fully connected Output
convolutions layers softmax

2 Layer/512 node LSTM with sequential hourly CNN for temporal convolutions at 3/4/5 hours,
data; at end of window, use the final hidden max-pool, combine the outputs, and run through 2

state to predict output.

fully connected layers for prediction.
55
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Many Ways to Model, What Do We Learn?

SSAM

variationa

LSTM

L1 oo
softmax

=
LSTM
layers

Input per

x, , T, 4 timestep

2 Layer/512 node LSTM with sequential hourly
data; at end of window, use the final hidden
state to predict output.
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Y

Fully connected Output

1 D tem ral
po layers  softmax

nnnnnnnn

CNN for temporal convolutions at 3/4/5 hours,
max-pool, combine the outputs, and run through 2

fully connected layers for prediction. o6



Many Ways to Model, What Do We Learn?

variationa

SSAM

a4 LSTM

1
)&

L0 LT

@te to predict output.

}

Output \

softmax

LSTM
layers

Input per
timestep

2 Layer/512 node LSTM with sequential hourly
data; at end of window, use the final hidden
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Y

Fully connected Output

1 D tem ral
po layers  softmax

nnnnnnnn

CNN for temporal convolutions at 3/4/5 hours,
max-pool, combine the outputs, and run through 2

fully connected layers for prediction. .



RNNs on Sequences

To model sequences, we need:

To deal with variable-length sequences
To maintain sequence order

To keep track of long-term dependencies
To share parameters across the sequence

o=

Let’s turn to recurrent neural networks.

Slides courtesy of Harini Suresh +
MIT 6.S191 | Intro to Deep Learning | IAP 2018



Example Network

input hidden output

MIT 6.S191 | Intro to Deep Learning | IAP 2018



Example Network

let’'s take a look at
this one hidden unit



RNNS remember their previous state:

0
\W‘ xo : vector representing first word

so : cell state at t = 0 (some initialization)
s1:cell stateatt =1

s1 = tanh(Wxo + Usog)

W, U : weight matrices



RNNS remember their previous state:

n

\W‘

X, “was

W, U : weight matrices

x1 : vector representing second word
s1:cell stateatt =1
So : cell state at ¢t = 2

so = tanh(Wzxy + Usy)



“Unfolding” the RNN across time:

time




“Unfolding” the RNN across time:

time

MIT 6.S191 | Intro to Deep Learning | IAP 2018

notice that we use the
same parameters,
W and U



“Unfolding” the RNN across time:

time

MIT 6.S191 | Intro to Deep Learning | IAP 2018

s, can contain
information from all
past timesteps



Why do LSTMs help?

1. Forget gate allows information to pass through

unchanged

2. Cell state is separate from what'’s outputted

3. sjdepends ons through addition!

— derivatives don't expand into a long product!

MIT 6.S191 | Intro to Deep Learning | IAP 2018



Predict Onsets of Interventions

e Delay prediction by 6-hour gap time.

e Attempt to predict onest, weaning, staying off, staying on.

slice size
1
Patient
Data (X)
gap prediction window
 _
Intervention
Signal (Y) J_I—-

67

Onset | Weaning | Stay Off | Stay On
Ventilation 0.005 0.017 0.798 0.18
Vasopressor 0.008 0.016 0.862 0.114
NI-Ventilation || 0.024 | 0.035 0.695 0.246
Colloid Bolus || 0.003 - - -
Crystalloid Bol || 0.022 - - -




NNs Do Well; Improved Representation Helps

Intervention Type
Task | Model || VENT | NI-VENT | VASO | COL BOL | CRYS BOL
Baseline 060 | 066 | 043 0.65 0.67 , ,
8¢ | LSTMRaw | 061 |_075 | 077 | 052 0.70 Representations with
8 % LSTM Words || 0.75 0.76 0.72 uphySIOloglcal WOI’dS” fOI’
CNN 0.62 0. 0.70 050 |
Baseline 0.83 0.71 074 | @ m— - H H H 1Fi
8 g | LSTMRaw | 090 | 080 | 091 o = oo Al Ségnlflcanﬂy
£ 2 | LSTM Words || 0.90 0.81 0.91 - - increased AU for
CNN 0.91 080 | 091 3 5
E 5 | i | 050 a0e | Wss - - interventions with the
aw L R .. = = .
% g % LSTM Words || 0.97 | 086 | 0.95 2 5 lowest proportion of
CNN 096 | 086 | 096 = -
% B Baseline 0.94 0.71 0.93 . - examples.
LSTM Ra 0.95 0.86 | 096 - -
A S | LSTMWords | 097 | 086 | 095
o CNN 0.95 0.86 | 0.96
S
Baseli 0.72
< B0 | LSTMRaw | 086 Deep models perform well
24 | e | o8 in general, but words are

important for ventilation
tasks.
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Decrease in AUC

Feature-Level Occlusions ldentify Per-Class Features

Ventilation Onset — Ventilation Weaning - Vasopressor Onset Vasopressor Weaning
= 0.12 £ ° £ O ¥ 0.0175
S o0.10 S 0.25- o 0:14 T 0.0150
5 s §01=2 S 0.0125
.2 0.08 2 0.20 ‘&% 0.10 Y
a a 5 4 0.0100
> = = 0.08 —
S 0.06 3 0.15 2006 S 0.0075
S 0.04 S 0.10 8 0.04 S 0.0050 -
S 0.02 S o.0s S 0.02 S 0.0025 -
< 500- < 5.00- ) < 0.00- "™ ® < 0.0000 e - ’
R " ' LS 25 i g B o & 7 e E Q9 v EmIT N O E™M Q20 T £
wx.E.8 = E = O S E8S S e EE S 538 Guvyeyu E S v EGSGQY sS4 S
2 = 383282806 2 ® 3833 8« 2R ©O 8aaas Zas® g gaog
S T 8% S T T 2w 8 n O ® S S8 e n O w ® o 3
o @ D v O T o ®© D vV T © @ b, - © o ¥ a
» = o 8 ¥ e a = 9 8 £ 8 a 1= = = 8
E8 g Eg 5 2 = g 5 2
0.14 - NI Ventilation Onset NI Ventilation Weaning Crystalloid Bolus Onset Colloid Bolus Onset
= E= + 0.14
5 012- S 0.010 + 0.05 S
= S 2 .
§0.10- S 0.008- 2.0:04 S o010
2 0.08 = 0.006 2 5 0.08
S S 0.03 S
g 0.06 8 0.004 S g 9.08
o 0-04 9 0.002 3 0.02 o 0.04
> (8] >
= 992 < 0.000 ' S 0.01 = 90=
0.00- = Y 7 . ¥ MmN T A oW =4 0.00 ¥ 5 T v
mmavg&gfe E_gg_!_!_gij 000 MNVH_‘EESQE)
8 0BG IS S = a o o a o= - . . L L e v g S £
S8 882 °" % 2 222 3 TT8gRegoSs S5 SE8E82°"
] [ o aavayv Sau 2 28 28 8 = 3
g g £ £83838¢8+s -
= L £ s - = =

69

Physiological data
were more
important for the
more invasive
interventions.

Clinical note topics
were more important
for less invasive
tasks.



Convolutional Filters Target Short-term Trajectories

Most differentiated features of 10 real patient trajectories that are highest/lowest activating for each task.

Ventilation
diastolic BP

heart rate

e—

oxygen saturation

respiratory rate

Higher diastolic blood
pressure, respiratory
rate, and heart rate,

and lower oxygen

saturation :

Hyperventilation

Vasopressor

heart rate
125

100 .
75

50

oxygen saturation
102 Y9

LG S
o6 N
93

systolic BP
180
150 £
120
20
topic 3

0.30
0.15 | -

e
0.00

Non-inv. Vent

o blood urea nitrogen

creatinine

oxygen saturation

——

phosphate

Decreased systolic blood
pressure, heart rate and oxygen
saturation rate :

Altered peripheral perfusion or
stress hyperglycemia
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——— top 10 trajectories
—— bottom 10 trajectories

Decreased creatinine,
phosphate, oxygen
saturation and blood
urea nitrogen :
Neuromuscular
respiratory failure



Convolutional Filters Target Short-term Trajectories

e “Hallucinations” give insight into underlying properties of the
network.

e The trajectories are made to maximize the output of the model, (do
not correspond to physiologically plausible trajectories).

diastolic BP heart rate mean BP respiratory rate systolic BP

T

vasopressor onset
ventilation onset

Blood pressure drops are maximally Respiratory rate decreasing is maximally
activating for . activating for ventilation onset.
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Outline

1. What’s Time Got To Do With [t?
a. Missingness
b. Representation

2. Case Study 1: MTGPs for Mortality Prediction and TBI
3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction

4. Project Discussion
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